Universiteit Leiden

Opleiding Informatica

Implementing an interface for virtual input devices

into the MGSim simulator

Name: Koen Putman
Date: 14/02/2017
Supervisor: Raphael Poss (UVA)

2nd reader: Todor Stefanov (LIACS)

BACHELOR THESIS

Leiden Institute of Advanced Computer Science (LIACS)
Leiden University

Niels Bohrweg 1

2333 CA Leiden

The Netherlands

Abstract

MGSim is a simulator used for research and education. One of the features it lacks is a
convenient method of accessing real-time external input in the simulated system. We
want to design and implement an interface that would give the simulation access to
external input from joysticks, gamepads, mice, and touch devices. After researching
existing frameworks, we show our interface design and describe its functionality. By
modifying existing parts of MGSim we connect it to external input devices. We use
this connection to create a component that implements our interface design. Finally we
measure its performance and provide a usage example.

Contents

1 Introduction

11 MGSIM .o e
1.2 Thesisoverview
2 Analysis of requirements and prior work
2.1 Designrequirements.
2.2 Examining existing frameworkso o oL oL
2.2.1 Simple DirectMedia Layer (SDL)
2.2.2 Directlnputand Xlnput
2.2.3 Linuxinputdevices.
2.2.4 Xlnput Device Extension Library
225 Kivy . e
2.3 SUMMANY . . . e
3 Interface design
3.1 Designoverview e
3.2 Address space divisionand protocol
3.2.1 Interface controlandstatus
3.2.2 Deviceinformation
3.23 EVentacCesst
3.24 Directstateaccess
3.3 Designdecisions e
331 Accesswidth L
3.3.2 Eventqueue popping
3.3.3 Extensibility
4 Implementation in MGSim
4.1 Implementation process overview
4.2 Proof of conceptusingthe UART
4.3 Supporting SDL-based input devices in MGSim
4.3.1 Interacting with the SDLInputManager
4.3.2 Implementationdetails
44 Updating the proofofconcept.
4.5 Theloylnputcomponent
451 Configuration
4.5.2 Communications with SDLInputManager
453 Requesthandling
454 Replay functionality
5 Results
5.1 Performance measurements
5.2 Example program

6 Conclusion
6.1 Whatworks e
6.2 Futurework e
6.3 Whatllearned

Bibliography

A Event structure overview
A1l Common eventstructure
A.2 Joystickevents
A3 MOUSE BVENTS o e e
A4 Touchevents. e

B Code for performance measurement

C Example program source code

27
27
27
28

29

30
30
31
32
33

34
35

Chapter 1

Introduction

MGSim is a simulator and full system emulator designed for multi-core processing [1]. It
is generally used for research and education. MGSim allows students to get a better
idea of the components that make up a computer and how they interact in a relatively
simple environment. One of the current shortcomings of the simulations is a lack of
interactivity when running. MGSim already supports a virtual graphical output
interface (gfx), however an external input source alongside this graphics device
would allow for creation of interactive software, like games.

1.1 MGSim

MGSim can be used to simulate a wide variety of system configurations by just
changing a configuration file. Its main benefit is to reduce the cost of prototyping
ideas for chips and benchmarking the performance of new designs. Next to being
configurable it is also easily extensible to support new components and instruction set
architectures. To aid research MGSim keeps track of performance metrics and allows
inspection of components while it is running.

For education MGSim offers a relatively simple infrastructure that is possible for a
student to understand. It aims to be easily deployable and offers them a view into a
computer’s inner workings. While a student might find MGSim interesting from a
technical standpoint, it could be modified to provide a more engaging learning
experience. As alluded to above, there are very few ways to interact directly with a
running simulation and none of those are easily accessible for a student. As a result
most of their simulations will just perform a task and exit, with any variation usually
requiring them to recompile the binary they run.

Providing a method of direct interaction that is easily accessible, like a simple
interface for various external input devices, could increase student engagement. It
would also teach them how to work with memory mapped I/O. By combining an
interface that connects to a joystick and the graphics device they can create interactive
experiences, like games, while learning how computers function. Outside of
educational use there is some potential merit to having an unpredictable source of I/O
data to test how various system configurations with I/O bridges handle such a load.

MGSim already uses the keyboard for various control tasks, which leaves joysticks,
gamepads, mice, and touch devices for potential input source candidates. The Simple
DirectMedia Layer library [2], which MGSim already uses for the graphics device, can
provide access to these devices across platforms.

1.2 Thesis overview

We set out to implement an interface into MGSim that allows access to external
input sources like joysticks, gamepads, mice, and touch. In chapter 2 we list our
requirements and research existing frameworks to compare their capabilities and
gather inspiration. We describe and discuss our our design in chapter 3. Chapter 4
describes our modifications to MGSim. We start with modifying existing MGSim
components for a prototype and move on to the modifications required to gather data
from external input devices. We modify the prototype to support the new system
and create the component that implements our interface design. In chapter 5 we
measure the performance of our work and describe an example program that uses our
interface. The conclusion in chapter 6 lists what works and what could be improved
in the future.

Chapter 2

Analysis of requirements and prior work

The first stop on our journey from idea to implementation is specifying requirements.
We move on to studying several existing frameworks and their internals if available. We
discuss their capabilities, how they are used, and compare them to other frameworks.
In the last section we summarise the results of our studies.

2.1 Design requirements

There are some initial requirements and expectations for the functionality of the
interface and implementation.

Our implementation will be using SDL 2.0 to handle input devices because it
provides platform-agnostic access to input devices and is already used in MGSim to
render the graphics framebuffer. We should aim to provide access to all of the data
that SDL provides, which includes information on the connected external device,
access to the current state of that device, and an event system that tracks changes in
device state.

While it does not have to emulate existing hardware, the interface should strive to
resemble one that might occur in hardware. An interface design by itself is not going to
be enough, so a component that implements this interface should be provided as well.

We will not be writing a driver and our interface serves an educational purpose, so
it should be simple to utilise. To this end, there should also be clear documentation and
example code to study.

The main purpose of this interface is adding interactivity to the simulation, so we
would like to keep our input latency low.

Additional functionality like recording the actions of our component and being able
to replay those on another execution can aid in testing and debugging. As such we
would like this replay to be as deterministic as possible for our component regardless
of what the rest of the system is like. This way a replay could be used in tests with
different system configurations to compare their performance.

2.2 Examining existing frameworks

2.2.1 Simple DirectMedia Layer (SDL)

Simple DirectMedia Layer [2], usually called SDL, is a cross-platform library mainly
used for games as it provides easy access to video, audio, and input devices. This is
invaluable when developing for multiple platforms. From this point onwards any
mention of SDL will refer to SDL 2.0.

SDL covers a wide range of input devices including joysticks, gamepads, mice,
keyboards, and touch devices. It accesses these devices through the APIs provided by
operating systems and presents them in a convenient way. Of all the options covered
it is the most complete and appropriate for our case. It allows access to device state
directly through some methods and all activated input devices will also send their
events to the main SDL event loop [3].

It should be noted that directly accessing the state actually reads from the internal
state that SDL keeps, which it keeps up to date using the events it gets from devices.
When the devices do not provide events, like analogue joysticks, SDL will regularly
poll them for their state instead. Mouse and keyboard state can be obtained directly as
well.

Touch does not allow easy direct state access and is entirely based on the events
it creates, so if we wanted to allow direct access to some touch data we would need
to keep the state inside our interface. For touch input SDL also has support for single
finger gesture recognition and can provide some data for multiple finger gestures like
the amount of pinch and rotation [4], which we could potentially incorporate into our
interface if needed.

One of the limitations of SDL is that it limits the amount of mice to one and unifies
their events into a single device like a lot of operating systems do [5]. This means that
we are unable to pass through individual mice and would require a separate source if
we wanted this functionality.

2.2.2 Directinput and XInput

DirectInput [6] is the old API for Windows that supports joysticks as well as
keyboards and mice, but for the latter it is now advised to use the window events
instead. Nevertheless they are available to us through the API and can be accessed
either individually or as a system device unifying all the mice or keyboards.

Acquiring a joystick, which gives access to its data, requires enumerating through
devices to find it, while the system keyboard an mouse are available for acquisition
without enumeration. Before acquisition the client can define what kind of data it wants
to gather, usually this is either full device state or a buffer of events since the last check.
After setting up and acquiring the device it is recommended to query the state or event
buffer during a main loop to receive the updated state of our device. Analogue joysticks
do not provide any kind of events so they are polled when their state is requested.

XInput [7] is the newer API that only supports up to four Xbox-like controllers. It
provides a simpler interface and access to more features compared to DirectInput. The
same API is used on the Xbox console for cross compatibility.

Determining if a controller is connected with XInput is done by simply querying its
state using an index of 0-3 and checking if it returns an error. The lights on connected
controllers give a visual indication of their index. This API only supports getting full
state packets from the controller and does not have an event based system. The data
packets are numbered so it is easy to determine if anything changed since the last check.

The XInput and DirectInput APIs can be used simultaneously allowing the user to
choose the most appropriate one for each device, which is what SDL does on Microsoft
Windows platforms. These APIs are limited to a single operating system family and
thus not very appropriate for our case, but the way they function was useful to research.

They are quite similar to SDL, though DirectInput requires significantly more effort
to set up. The main difference being that XInput and DirectInput do not use querying
state of individual parts of the joystick but instead opt for returning the entire state in
one packet, like is usually the case in USB packets. Another difference is that, instead
of getting all events in a single queue like SDL, event buffers are per-device and not
unified. These per-device queues need to be tracked and checked individually, which is
more complex than using a unified queue, but this method does make the event source
clear without requiring an event field to indicate the source device like SDL. It also
allows the user to check certain devices more often without having to process events
from all other sources.

There is no explicit support for touch input in either of these APIs, so supporting
touch requires window events like is recommended for mouse and keyboard events.

2.2.3 Linux input devices

Linux input drivers [8] can provide data through file descriptors typically found in
/dev/input/. The main way to access the devices we aim to support is through evdev,
which lists individual devices as /dev/input/event[6-31].

These event file descriptors can be read to obtain a standard event structure that
contains all relevant data for that device. This is essentially the same as a per-device
event queue like DirectInput uses. The file descriptor can be checked for new events
using select() and information like the current state of the device and extra
information on its capabilities can be gathered using ioctl(). Accessing mice and
keyboards directly through this system requires superuser permissions, so it is not
useful for our purpose.

SDL uses this unified evdev system to gather data from joysticks, but a lot of
drivers also provide more specialised access to this data. Mice and keyboards can be
read individually or through a unified descriptor, though these still require superuser
permissions.

Joysticks are also accessible through the joystick API [9], which lists all connected
joysticks as /dev/input/js[0-31]. These joystick file descriptors only support buttons
and axes and work a lot like the evdev joysticks, but their events are smaller and they
can not be queried directly for their state. Instead they queue their entire initial state
in events when their file descriptor is opened. This joystick API is attractive for
implementing a proof of concept as it only requires reading from a file descriptor.

Actual access to mice, keyboards, and touch devices as a non-superuser usually
utilises the X Window System. This is elaborated upon in the next section on the
Xinput extension for X11.

2.2.4 X Input Device Extension Library

The X Input Device Extension Library [10], or Xinput for short, is the primary way of
getting keyboard, mouse, and touch device information when using the X Window
System. Though it shares a name with a Microsoft API their similarities end there.
Proper support for multi-touch devices was not implemented until Xinput 2.2.

Its method of distributing events can be compared to SDL. There is a single unified
event queue that the user reads from and the kinds of events it provides can be

selected. There is a mechanism to enumerate other devices besides keyboards and
mice and open them to receive their events. This does not seem to be listing joysticks
though, so supporting those is still going to require the joystick API. When Xinput 2.2
or higher is present on a system it is possible to turn on multi-touch support, which
will also send touch events into the queue.

Overall Xinput works a lot like SDL with a main event queue that receives all
window, keyboard, and mouse events with the option to also receive touch events. It
also supports querying the state of devices directly.

2.2.5 Kivy

Kivy [11] is a cross-platform GUI toolkit aimed at touch interfaces and thus works a bit
differently from the previous APIs we looked at. It dispatches touch events to all visible
widgets that are listening for them, so those widgets get to do something with them.

Kivy can access joysticks through the PyGame API, which works much like a
joystick in SDL. This system is separated entirely from the touch input event system.
In addition to motion events from touch devices it also supports motion events for
accelerometers as this framework is also aimed at mobile devices. It does not dispatch
any keyboard events like other frameworks, as it was built with touch devices in mind
where keyboard input is usually through text fields using an on screen keyboard. The
mouse can be used to emulate multitouch, but normal mouse input data is not
directly accessible. There is no gesture detection built in at this point in time.

Overall this approach is very appropriate for a GUI toolkit, but not very logical for
our input interface as our implementation would not be GUI focused.

2.3 Summary

We give a more concise overview of the capabilities of the frameworks and how they
compare in table 2.1.

Overall SDL provides the best abstraction for all devices and it does so in a single
unified event loop. The cross platform aspect and the fact that it is already present in
MGSim make it the obvious choice for gathering input data from the sources we want
to support. The lack of access to individual keyboards or mice is certainly a limitation,
but we are not planning to support keyboards in this interface and the mouse data can
be based on the system pointer.

Framework Joystick Keyboard Mouse Touch Events State access
SDL Many Unified Unified Multi Unified Yes
DirectInput Many Individual | Individual | No Per device Yes
Xlnput (Microsoft) | 4 gamepads No No No No Yes
Linux kernel API Many Individual | Individual | Multi | Per device Yes
Xlnput (X11) No Unified Unified Multi Unified Yes
Kivy Many No No Multi | Per widget No

Table 2.1: Comparison of frameworks for handling input devices

Chapter 3

Interface design

With our list or requirements we can start designing an interface that satisfies them.
This chapter only deals with the design of the interface and how it functions, while
chapter 4 deals with the implementation of a component that emulates it. We start
with a general overview of the design and move on to a more detailed description. In
the last section we discuss some of our design decisions. A simplified diagram of the
architecture model is available in figure 3.1 at the end of this chapter.

3.1 Design overview

We designed our interface for memory mapped I/O, which means that we have an
address space and all interactions will be read or write requests. It supports sending
interrupts, but this feature is optional. While MGSims packet based I/O network was
what we designed for, it should be adaptable to other MMIO based models.

Our design is a mock-up and not suited for any production components. While the
address space division and protocol could be implemented, supporting the actual
functionality would require a separate microcontroller to handle and process all USB
communications with external devices.

The interface provides information on the layout of the connected device, read
access to the front element of a FIFO event queue, and direct access to the device state.
While the next sections of this chapter may sometimes refer to specifics of our
implementation, the interface is designed to be extensible and to support many
different implementations.

3.2 Address space division and protocol

The address space is divided into several sections and subsections, each with their own
purpose. These sections are spaced out in a way that would allow a (de)multiplexer to
easily select sections based on certain bits of the address.

When we refer to a bit by number in the following sections we use a system that starts
numbering from 1 at the least significant bit. Any addresses we mention are offsets from
the base address of the device.

Major sections are selected by bits 11 and up giving us kibibyte (1024 bytes) size
blocks. We currently use five of these blocks but support further expansions to the
interface. The first of these sections has an extra subdivision on bit 10 resulting in two
blocks, the first of which also divides itself based on bit 9.

The resulting sections and their functionality is summarised in table 3.1, but we will
cover these things in more detail in the following sections. Some of the details in this

Address bits value . _
11+ 1710 19 18 Hex | Width | R/W | Description
0] 00 0 0 1 R | Oif disabled, device type otherwise
W | O disables, non-zero enables device
1 1 1 R 1 if events are enabled
W | 0 disables, non-zero enables events
2 2 1 R | 1ifinterrupts are enabled
W | O disables, non-zero activates interrupts
3 3 1 R | the interrupt channel
W | set the interrupt channel
4 4 1 R | The amount of queued events
W | Pop the front of the event queue
1 0 100 4 R Information on the axes section
4 104 4 R Information on the buttons section
8 108 4 R Information on the hats section
12 10c 4 R Information on the balls section
16 110 4 R Reads O to indicate no further sections
11]048,12,16 200-210 4 R Read 4 byte chunks of the current event
1 0,2/4,...510 400-5fe 2 R Direct access to axis states
2 0,1,2,...,31 800-81f 1 R Direct access to bitsets with button states
3 0,1,2,...,255 c00-cff 1 R Direct access to hat states
4 0,2/4,...,1022 | 1000-13fe 2 R Direct access to ball states

Table 3.1: Overview of the interface address space in our implementation

table are based on our implementation, but we will clearly explain what parts of the
interface are implementation-defined.

3.2.1 Interface control and status

This section at the start of device memory is the only section that can be written to. All
access to this section is done using I/O operations of 8-bit width. This is the only section
that is about the interface itself, every section after this is dedicated to information about
the external input device it is connected to.

The first byte can enable and disable the interface. Writing 0 disables the interface
while any other value activates it. When read it returns either 0 when the interface is
disabled or an implementation-defined device type when it is enabled.

The following two bytes are used to activate events and interrupts respectively.
Writing O disables these features while any other value activates them. When read
they return 1 if that feature is enabled and 0 otherwise.

The fourth byte can change the interrupt channel by writing to it and when read it
returns the current channel.

The fifth byte contains the length of the current event queue. While there is no hard
limit on the event queue size, this value is capped at 255. Writing to this address can be
used to pop the front event off the queue.

Interrupts only function when events are enabled and they indicate that there are
events in the queue, so when an event is placed in the empty queue it sends the
interrupt. The interrupt is cleared once the last event is popped of the queue.

10

3.2.2 Device information

The second section describes the layout of the device that is connected to the interface
and how its state is described. It can be accessed using 32-bit aligned read operations.
The addresses for this section start at 0x100.

Each value read from this section corresponds to one of the direct state access
sections of the device. It describes how to access that section and how the state is
conveyed. The first value describes the second kibibyte block of device address
space, the second describes the third kibibyte and so on. When a value of 0 is read it
indicates that there are no more sections.

This section is used to signal some of the implementation-defined details. Our
implementation has four sections for direct state access, so we have four values in this
section. These four values correspond to the different types of joystick parts that
produce input data: axes, buttons, hats, and balls. We will discuss these types in more
detail in section 4.3.1.

The 32-bit values read from this section actually represent four unsigned 8-bit values.
The most significant byte, bits 25-32, represents the amount of items in this section. Bits
17-24 represent the required access width of this section in bytes. Bits 9-16 describe the
amounts of bits used to represent a value in this section. Bits 1-8 describe amount of
values that are stored per item.

To make this easier to understand we will give an example. Consider a connected
device with six axes which produce one 16-bit value each. These values are served
individually so the access width is two bytes. In this case 32-bit value would be
composed of the following bytes 0x06 0x02 0x10 0x01.

All this data is exposed to make interface extensions easier and to allow data
representation to differ between implementations. If some implementation chooses to
represent whole other kinds of data through this interface, all information required to
access this data is available during runtime.

3.2.3 Event access

The third section can be used to access up to 512 bytes of event data. This section can be
accessed using aligned 32-bit read operations. Addresses for this section start at 0x200.

This section can be used to access the event that is currently at the front of the event
FIFO. Accessing this section is only allowed if events are enabled and there is at least
one event in the queue.

The structure of the events that are presented here is implementation-defined. We
provide a header with our implementation that describes the event structures for each
of our device types. Knowing the event structure allows the user to determine which
32-bit chunks of the event are useful to copy.

After copying the relevant chunks of event data to local memory the event can be
popped by writing to the queue status byte in the control section.

11

3.2.4 Direct state access

The remaining device address space is divided into kibibyte sized blocks used
for direct device state access. The access width of these individual blocks can be
determined using the information in section 3.2.2. All accesses to this section have to
be aligned. Each block can hold up to 256 32-bit values, which should be enough to
represent any conventional device.

Our implementation defines four of these sections, which correspond to the four
types of data produced by joysticks that we will describe in section 4.3.1.

3.3 Design decisions

This design went through several iterations before arriving at this version and we will
use this section to elaborate on some of the decisions we made along the way.

3.3.1 Access width

One major decision has been access widths, in the current iteration these are fixed per
section but can vary between sections. We could have chosen a fixed 32-bit access width
as well, given that the only section that is currently forced to 8-bit width is the control
section which could just as well be 32-bit. The latter sections could easily provide direct
access in 32-bit values by presenting multiple items in a single response.

However, using 32-bit operations for the data we want to present in these sections is
not always convenient, because extracting individual values could require shifting or
masking. The control section at the start simply does not require more precision than 8
bits provide, so we decided to keep it this way.

Another way of handling access width is to allow the user free access to any valid
address with any width. This obviously would not work for the control section, but
the other sections could technically be handled this way. This requires handling cases
like requests that start at the end of valid address space and read into undefined
space. Unaligned reading and reading parts of larger values would need to take the
endianness of host and simulated system into account. To avoid making the interface
more complex we decided against doing this.

3.3.2 Event queue popping

The way we pop events on the queue is by writing to an address, but this was not the
only method we considered.

Another way to handle this is popping the queue once the entire event has been read,
but with our variable event structures that could end up wasting cycles on copying
useless or empty chunks.

An alternative is to pop the queue once the first chunk is read so the event could
be copied back to front, but this first chunk might not contain useful information and
requiring to read it could slow everything down.

So we arrived at our current solution of writing to the interface, because the
asynchronous I/O interface of MGSim does not have to wait for a response after
sending a write request.

12

3.3.3 Extensibility

The design is undeniably based on joystick data, but we did manage to make it easily
extensible if new types of data need to be presented. The sections we defined also have
a lot of unused address space to allow for extensions of functionality. We made sure
that it is always possible to get direct access to state data, even if there is no external
information available on how an implementation presents it.

interrupt Interrupt interrupt enable/channel
—
request generator |
addr./size/data for write requests
Ccl)Jr:]tirtol enable device/events
rerae(é/uvgge Request addr./size for read requests r
T source destina.tion addr. bits for selection Device fills info
- addr. selection information
- size data pop/clear
- data(opt.) FIFO
info event
Ciiezsé' queue fills queue
event chunk
Direct state update state
R state data 1 access 1
read esponse
«1€ad |
response nerator state data 2 -
P generato Direct state update state

device type/event notification

state data n

l

Microcontroller
connected to
external device

access 2

L)

Direct state
access n

update state

Figure 3.1: Diagram of architecture model

13

Chapter 4

Implementation in MGSim

Implementing our interface design in an MGSim component that connects it to an
external device took several steps. This chapter discusses these steps and how they
worked towards achieving our final result.

4.1 Implementation process overview

We started by familiarising ourselves with how MGSim functions. To learn how to
use memory mapped I/O we wrote a simple program that uses the graphics device.
Our understanding of how components function improved greatly after we studied
the source of the graphics component to learn how it was interpreting our commands.
This armed us with the required knowledge to start working towards our goal.

Our contributions to MGSim started with creating a simple proof of concept that
uses the existing UART to pass events in section 4.2. This proof of concept is very
limited, so in section 4.3 we describe the modifications we made to properly connect
MGSim to external input devices through SDL. We created a system to gather and
distribute events and device information to components. We extended our proof of
concept to support receiving events through our new system in section 4.4. And
finally, to properly support all the data our new system provides, we created the
component that implements our interface design in section 4.5.

Before we move on to specifics it is useful to know how I/O components for
MGSim function. An I/O component registers itself with the I/O interface when it is
initialised and has to implement a few methods. Two of the important methods
handle incoming read and write requests respectively. Handling read requests
requires sending a response with requested data back through the I/O interface.

All of our modifications to MGSim, including code in arch/dev/ and documentation
in doc/, are available in a branch on GitHub [12]. An additional repository with example
code and configurations can also be found on GitHub [13]. We will explain one of these
examples in more detail in section 5.2. A class diagram showing a simplified view of
all of our modifications and how they interact can be found at the end of this chapter
in figure 4.1.

4.2 Proof of concept using the UART

Being a proof of concept we wanted to keep things simple, so we used the Linuxjoystick
API [9] that we mentioned in section 2.2.3. It only requires reading from a file descriptor
and has a constant packet size, making it easy to work with. Our other option was using
evdev, but those events are bigger in size and it does not provide an initial device state.

14

https://github.com/Fleppensteyn/mgsim
https://github.com/Fleppensteyn/joyinput-examples

volatile uint8_t xuart; //pointer to the base address of the UART
struct js_event e; //event as defined in joystick API documentation
uint8_t xbuff = (voidx)e; //Use the event as buffer

//This next part would preferably be in the main loop
if (uart[5] & 1){ //Check the data ready bit of the LSR for a new event
for (int i = 0; i < sizeof(e); i++)
buff[i] = uart[0]; //copy individual bytes
}

//Process the event that was copied

Listing 4.1: Using the proof of concept

We decided to use the existing MGSim component that implements a universal
asynchronous receiver/transmitter, usually referred to as UART. A UART facilitates
serial communication between two systems, usually by transmitting and receiving
single bytes as packets of individual bits without requiring elaborate synchronisation
protocols. Using a UART to communicate is simple and straightforward, writing data
to the UART transmits it, while reading returns the data that it received. Internally the
data is sent from and received in shift registers, which transform data into individual
bits and vice versa. Many UARTs have FIFO buffers to combat data loss when the
CPU writes too quickly or takes too long to read received data. UARTs are common
on microcontrollers, as their simple but versatile abilities can be used implement
many features like debug shells.

We decided to modify the UART component because it was very simple to use and its
implementation already allowed reading from file descriptors, including ones that do
not constantly provide data like our joystick. The UART component does not emulate
to the level of transmitting individual bits, but keeps everything byte sized instead. It
teatures two FIFO buffers for both receiving and transmitting.

The code for the UART component can be found in the files UART.cpp and UART.h.
Documentation about configuration and usage can be found in mgsimdev-uart.rst.

We added a new mode to the component for reading from joysticks and allowed the
user to define what file descriptor it used in the configuration file.

The original way the component reads from file descriptors is byte-by-byte, but
single byte reading from the joystick API file descriptors is invalid. The joystick API
requires read requests of at least eight bytes, which is the size of one event. If a
request asks for more than eight bytes it fits as many full events as it can in the
requested amount of bytes. Only allowing complete events to be read is convenient
for the joystick API, because it can just move the head position in its internal ring
buffer to pop the events that were read.

Changing the component to read eight bytes from joysticks lead to the problem that
the UART input latch only holds one byte at a time, so we only move the first byte to
the latch and store the rest in a queue. When a byte from the input latch is moved to
the FIFO buffer, the next byte from the queue is put in the latch.

Listing 4.1 contains a simple example of interacting with the proof of concept from
inside the simulation. This example only shows copying the bytes of an event from
the FIFO inside the UART and does not include locating the UART base address, the
joystick APT event structure [9], and processing the event after copying. This example
also assumes that the UART either has the entire event ready in the FIFO or is clocked
fast enough to copy a new byte from the input latch for each subsequent read request.

15

https://github.com/Fleppensteyn/mgsim/blob/master/arch/dev/UART.cpp
https://github.com/Fleppensteyn/mgsim/blob/master/arch/dev/UART.h
https://github.com/Fleppensteyn/mgsim/blob/master/doc/mgsimdev-uart.rst

A more elaborate example called uartjsvizold.c is available in the examples
repository [13].

While functional, this method is slow, can only be used on Linux, and only provides
very simple joystick events. It lacks support for all other device types we want, direct
access to device state and info, and the joystick events only distinguish between axes
and buttons with no proper support for hats and balls.

4.3 Supporting SDL-based input devices in MGSim

To get around the platform-binding limitations and support the wide variety of features
we were aiming for, we have to modify MGSim to use SDL for input gathering. This will
give us cross-platform access to all the devices we aim to support with our interface.

SDL was already used by MGSim to render displays for all graphics devices,
which required an event processing system that handled window and keyboard
events for these displays. We moved the existing event handling code contained in
the DisplayManager subclass of the graphics device component, into a new
SDLInputManager. This new manager retains all display related functionality while
also providing ways to access data from input devices.

The code for the SDLInputManager can be found in the files SDLInputManager.cpp and
SDLInputManager.h.

We will start by describing how to interact with the manager and and what data it
provides before moving on to some implementation details.

4.3.1 Interacting with the SDLInputManager

The main functionality of manager is dispatching events to registered clients. To
become a client a class needs to implement a simple interface called ISDLInputClient,
which contains a single method called void OnInputEvent(MGInputEvent event). This
method will be called by the manager to dispatch events to its clients.

There can only a single instance of the manager at any time, so before trying to
interact with it for the first time we recommend calling CreateManagerIfNotExists.
In order for SDL to process events properly, there needs to be at least one active
window, so an active gfx device is required.

While we will cover general information about events, the specifics about their
structure and contents are explained in appendix A and available in header form as
MGInputEvents.h on GitHub [12]. Specifics about method calls of the manager can be
found in the header SDLInputManager.h.

Client registration

A client can register with the manager to receive events for either a joystick, the
mouse pointer, or touch devices. For the latter two of these, there can only be one
client registered at a time. Mouse events generated by a touch interface are distributed
to the mouse client unless there is also a registered touch device client.

Registration for a joystick requires the client to provide a joystick index, which
is used to select one of the connected devices. Every joystick can only have one
registered client, so we provide a method that checks if a certain joystick index is valid

16

https://github.com/Fleppensteyn/joyinput-examples/blob/master/uartjsvizold.c
https://github.com/Fleppensteyn/mgsim/blob/master/arch/dev/SDLInputManager.cpp
https://github.com/Fleppensteyn/mgsim/blob/master/arch/dev/SDLInputManager.h
https://github.com/Fleppensteyn/mgsim/blob/master/arch/dev/MGInputEvents.h
https://github.com/Fleppensteyn/mgsim/blob/master/arch/dev/SDLInputManager.h

struct JoystickInfo

{

int id; //SDL instance ID (not joyindex)

unsigned char naxes; //Number of axes

unsigned char nbuttons; //Number of buttons

unsigned char nhats; //Number of hats

unsigned char nballs; //Number of balls

JoystickInfo()

: id(-1), naxes(0), nbuttons(0), nhats(0), nballs(0) {}

}s5

Listing 4.2: JoystickInfo structure

struct JoystickState

{
int instance_1id; //SDL instance ID
std::vector<intle_t> axes; //Absolute positions
std::vector<uint8_t> buttons; //Bitstring with 1-bit states
std: :vector<uint8_t> hats; //encodes state of a d-pad
std: :vector<intle_t> balls; //Relative values in two dimensions
JoystickState()

: instance_id(-1), axes(), buttons(), hats(), balls() {}
};

Listing 4.3: JoystickState structure

and available for registration. This index is also required to access the additional
information our interface provides.

Any registered client can also undo its registration to stop receiving events and free
a certain device for another client.

Device information and state

Next to the events it distributes, the manager also allows clients to get additional
information about the device they are connected to. This is mainly useful to get
information about connected joysticks, so the data structures we use are based on the
way SDL represents joysticks. While data from the mouse pointer can be adapted to
fit this format, this additional information is not available for a touch client.

There are two types of additional information available, JoystickInfo which
describes device layout and JoystickState which describes its state. These structures
are visible in listings 4.2 and 4.3 respectively.

Thejoystick layout is described by the amount of inputs of a certain type. We support
four types of input sources: axes, buttons, hats, and balls. The kind of joystick parts
these types represent and how we store their state is explained below. The joystick
state structure contains a vector for each input type, which contains the states of all
inputs of that type.

An axis produces a signed 16-bit integer representing an absolute position and is
usually used to represent clearly bounded input sources. Controls that present
themselves as axes include triggers, sliders, joy- and analogue sticks which present
their state as two axes, and we use them to indicate the absolute position of the mouse
cursor on the SDL window.

The state of a button can be encoded as a single bit of data, so button states are

17

presented in one or more bytes, each representing eight buttons. The state of a single
button can be extracted using a mask. In addition to the buttons of joysticks this also
encodes the mouse button state. The header we provide shows how the mouse buttons
are numbered and provides a macro to generate a mask for a given index.

Hats encode their direction in the lower 4-bits of the 8-bit value we store, Each bit
indicates one of the four main directions and they can be combined to get a direction.
We provide masks to simplify extracting the state in the header. This data type is used
to represent directional pads that can point in eight directions.

A ball represents relative movement on two axes in the form of two 16-bit signed
integers, so the size of our vector in the state is actually twice as large as the amount of
balls. This data type is generally used to represent trackball movement, but it could also
be used to represent relative mouse movement of the pointer and the last movement
directions of the mouse wheel.

Event data

The events that a client receives are based on SDL events [3], but while the numerous
structures SDL uses are no problem on modern systems they are less suitable for use
in a simulator like MGSim. SDL provides a different structure for nearly every event
type, which is unnecessary as most of the fields are reusable. There is a lot of padding
and every event has extra values to help identify things like the source device, which
is useless information for a simulated system. Several fields are also very wide for the
values they will contain. To make transmitting events to the simulation as fast as
possible we created a new set of three optimised event structures to represent joystick,
mouse, and touch events. The input manager translates SDL events into our own
event structures before dispatching them to clients. More information about the
events and their fields can be found in appendix A and the header we provide.

We chose to separate event types for device types because the data their events
produce is so different. While it would be possible to translate every mouse event into
several joystick events, it would not be very efficient. Touch events are a separate
category entirely and they would not translate well at all.

The touch events provided by SDL are filled with many floating point values, which
takes a lot of space and is problematic for systems that have no floating point unit. For
our own events they are translated into signed 16-bit fixed point representations. The
values in the SDL event are normalised in the interval (—1.0,1.0), so by multiplying
with 32768 we can obtain a fixed point value in 16-bit signed range with the radix right
after the sign bit. To handle the case where the float value is either —1.0 or 1.0 we change
it to the closest floating point value that does fit in our interval. The conversion function
is available in appendix A 4.

A client is recommended to keep an internal joystick state up to date instead of
constantly requesting it from the manager. Keeping the state up to date based on
events is significantly less performance intensive than updating the entire state in the
manager.

18

struct SDLInputClientContext

{
SDL_Joystick *xjoystick; //SDL joystick representation
ISDLInputClient xclient; //Pointer to the client
int joyindex; //joyindex used for registration
struct JoystickInfo joyinfo; //Information on the joystick
SDLInputClientContext()

: joystick(@), client(0), joyindex(-1), joyinfo() {}
}s

Listing 4.4: Input client context structure

4.3.2 Implementation details

The display manager that we started with already had an event loop that handled
keyboard and window events for connected displays. Event checking was only done
right before refreshing the display. This was on a large delay because it is expensive in
terms of performance and refreshing often is not really useful in the case of a slow
simulation.

To achieve our goal of low input latency we added a way of checking for events
without refreshing the display and made the amount of cycles between event checks
configurable separately from the display refresh timing.

Client management

Information about registered clients is kept in a client context shown in listing 4.4.
This contains a pointer to the SDL joystick, a pointer to the client itself used to pass
events, the joystick index they registered with and a JoystickInfo describing the
connected device.

We only allow one mouse client and one touch client, so the client contexts for these
devices are allocated statically. When a client registers for mouse or touch events it
updates the client pointer and sets the joyindex to 1 to indicate that there is a client.
The JoystickInfo for the mouse is also updated to the standard mouse description.
When these devices undo their registration the client context is reset.

Keeping track of joystick clients is slightly more complicated. When a client wants
to register for a joystick, we start by checking if the requested joystick exists and is not
yet in use by another client. If the joystick is available, we save the client pointer and
the joyindex in the client context. The manager then fills the joystick field by asking
SDL to connect to the joystick which returns the joystick pointer. If the connection was
successful the joyinfo is filled by calling SDL functions. This data includes the joystick
instance ID, which should not be confused with the joystick index. The instance ID
is used in joystick related SDL events to indicate the source joystick, which allows us
to distinguish between multiple connected joysticks. The event processing loop is the
most executed part of the manager code: to optimise locating the correct client for an
event, we store our clients in a map using the instance ID as the key.

When a client undoes their registration, the corresponding context is located in the
map, the SDL joystick connection is closed, and the context is removed from the map.

19

Event processing

The event checking loop polls SDL for events until the event queue runs out. We
updated it to add cases to catch events for the devices we support.

For mouse and touch events, these cases are fairly straightforward, since we only
support a single client for these devices at any time. In the case of joystick events the
instance ID from the event is used to find the relevant client in the map.

Once a client is located the event is converted into one of our own event structures
and passed to the OnInputEvent method of the client.

Event conversion is a fairly straightforward process that starts around line 235 in
SDLInputManager.cpp. Some of the mouse fields are cast from 32-bit to 16-bit integers
to save space, which is not a problem as getting these values out of 16-bit range would
require an SDL window with a horizontal width over 32767. This window would
need to span more than 17 horizontally stacked 1080p displays. Touch events have
their floating point members converted to fixed point, which results in enough
precision to determine the touched pixel on a 32K (30720x17280) display.

Info and state requests

Any requests for JoystickInfo just return the one stored in the client context.
Requests to update the joystick state use the passed joystick index to find the related
client context. The vectors are resized to fit the state information and SDL functions
are used to fill it using the internal state of SDL. Mouse state requests do something
similar, but there are no SDL functions to query the last relative mouse and wheel
movement so those ball values are set to 0. These state update requests are useful for
getting the initial state, but more expensive than a client keeping the state up to date
based on the events it receives, so we recommend using that method instead.

4.4 Updating the proof of concept

With our input manager ready for use, we decided to update the UART once more.
The new mode we added requires the user to define a joystick ID in the configuration
file. The UART uses that ID to connect to the input manager and receive events for
the corresponding joystick. The callback handler puts the events on the same queue of
bytes we used for the other UART joystick mode.

The only difference for a program running in the simulation is that we use the
different event structure now which is two bytes larger. To adapt the example
we gave in listing 4.1, the only change would be to change the event type to
MGJoyInputEvent. A more elaborate example called uartjsviznew.c is available in the
examples repository [13].

This method is slightly slower than the previous one because we have to transfer
two additional bytes, but it does add support for hats and balls and is now platform
independent.

One of the potential issues with this implementation would be additional latency
due to the extra layer that SDL adds compared to the joystick API, but as we show later
on this is not the case.

20

https://github.com/Fleppensteyn/mgsim/blob/master/arch/dev/SDLInputManager.cpp#L235
https://github.com/Fleppensteyn/joyinput-examples/blob/master/uartjsviznew.c

4.5 The Joylnput component

As the title of this thesis suggest the goal was to implement an interface, so armed
with our design from chapter 3 we can finally create the component we desired. Our
implementation takes the form of a component called JoyInput, which might be
deceptive as it also supports mouse and touch input, but as far as names go this one
does bring joy.

The code for the component can be found in the files JoyInput.cpp and JoyInput.h.
Documentation on how to configure and use it can be found in mgsimdev-joyinput.rst.
In this section we will describe its configuration options before moving on to describing
several aspects of the implementation.

4.5.1 Configuration

The component can be added to any system configuration by defining a JoyInput
component and choosing a device type. The required option :JoyInputDeviceType
can be set to one of the following values: JOYSTICK, MOUSE, TOUCH, REPLAY.

MOUSE and TOUCH require no further configuration, while JOYSTICK requires setting
the additional option : InputJoystickIndex to the desired joystick index.

The REPLAY mode will read data from a log file created on a previous run of MGSim
and reply to requests the exact same way as long as they arrive in the same order.

The :JoyInputReplayFile option defines the file used for either saving or reading
a replay. If a replay file is defined and the device type is anything but REPLAY a log is
written.

The last setting we discuss does not impact the JoyInput device directly and needs
to be put in a global block. The optional SDLInputPollDelay defines the delay between
polling for events in cycles. This defaults to 1000 cycles when it is not defined.

4.5.2 Communications with SDLInputManager

In anything but replay mode the device relies heavily on the SDLInputManager, starting
during component initialisation where it makes sure there is a manager to work with. If
the component is configured to connect to a joystick a quick check is done if the defined
joystick index is valid.

When the component is turned on through the interface we register for the device
we want and request the JoystickInfo to update our local copy. If the device is either
a joystick or a mouse the local JoystickState is passed to the manager to update it for
accurate state data. If either the registration or state update fails the component is not
enabled.

When the component is turned off through the interface it undoes the registration
with the manager.

In the onInputEvent method, which is required to be a client, we receive events and
use them to update the local JoystickState. If events are enabled the event is also
added to the queue and if interrupts are enabled the flag to send them is set.

21

https://github.com/Fleppensteyn/mgsim/blob/master/arch/dev/JoyInput.cpp
https://github.com/Fleppensteyn/mgsim/blob/master/arch/dev/JoyInput.h
https://github.com/Fleppensteyn/mgsim/blob/master/doc/mgsimdev-joyinput.rst

4.5.3 Request handling

Given that our implementation outsources event collection, most of the code is
dedicated to handling read and write requests. The address space division for our
implementation is the one we showed in table 3.1 back in section 3.2.

Write requests are handled in a fairly straightforward manner given that only the
first few addresses allow writing and they are all 8-bit width. After catching invalid
writes there is a simple switch statement on the address that handles enabling the
device and its various features. When the event queue popped its last event the
interrupt flag is cleared.

Read requests are slightly more complex given the variable access widths and the
amount of different sections, so any request is considered invalid until proven
otherwise. The bulk of the code is nested switch statements on various parts of the
address up to three levels deep to mimic multiplexers. Any responses bigger than a
byte are appropriately converted to the correct endianness for the simulation. All
sections personally verify if access width and alignment are correct and if the address
is in bounds.

The first section is fairly straightforward as it just returns information about the
component state.

The second section describing device layout and direct state access is static apart
from the number of items in the upper byte.

The third section providing event access uses a pointer into the current event to
extract the appropriate chunk.

The latter sections that provide direct state access are all just translating addresses
into indexes to use for the vectors in the state.

4.5.4 Replay functionality

One of the challenges posed at the start of this project was implementing a
deterministic replay capability. This would make it easier to compare performance
between configurations and can reproduce exact situations to make tracking down
bugs easier.

The way we decided to implement this replay was at the level of requests and
responses in the component itself, with every request and response logged with all
necessary data in a plain text format. This log can be read back on a subsequent
execution of the simulator to send the exact same responses and check if the same
exact writes happen in sequence.

This approach does not allow activating interrupts as that would require more
extensive changes to MGSim to track them outside of our component. Currently this
does not yet stall the processor if a request is early and only checks if the requests are
exactly the same.

22

<interface>>

ISDLInputClient JoyInput

UART

- ~---_] eventqueue: dequeue

joystickqueue : dequeue OninputEvent(event) : void joyinfo : JoystickInfo
sdljoyindex : int joystate : JoystickState

Kernel sdljoyindex : int
client | 0...*
calls OnCycle client | 0..*
SDLInputManager
inputPollDelay : unsigned
joystickclients : map
1 OnCycle(cycle) 1
sends events CheckEvents(refresh) sends events

RegisterJoystickClient(client, index)
UnregisterfoystickClient(client)
GetJoystickInfo(index)
UpdateJoystickState(state, index)

Figure 4.1: Simplified class diagram showing joystick related interaction

23

Chapter 5

Results

5.1 Performance measurements

While there is no other implementation to compare against, there are some aspects of
our implementation that we can assign numerical values to. We will compare our final
component implementation to the UART prototypes.

The main measurement here is efficiency in accessing event data, which is the only
aspect that is available across all interfaces. The results will, of course, depend heavily
on the environment, but with the same configuration they can still provide useful
insight.

The comparison was done on the MT-Alpha architecture with a configuration very
close to the example that comes with MGSim. We are timing the amount of cycles it
takes to copy the entire event into a local buffer. Timing starts when the CPU receives
the result from reading the status register or queue size and it ends when the last chunk
of the event is received in a register. To get a stable cycle count for executions we had
every test copy 10 events before exiting, this ensured that our results were not affected
by the cache.

For our component we tested both copying the entire event and just the chunk with
the fields we most commonly use. The UART was tested in both of the modes we
implemented. After the copying completes we verify that the event was saved
correctly to avoid compiler optimisation from manipulating the results by discarding
data. Excerpts of the test programs which show the code for the section we timed can
be found in appendix B. The results for our test are visible in table 5.1.

Configuration | Original cycles | Corrected cycles
Joylnput (partial event) 22 36
Joylnput (full event) 24 39
UART using joystick API 49 51
UART using SDL 44 64

Table 5.1: Interface performance

Partially reading the event is the fastest method as one would expect, followed rather
closely by reading the entire event. The difference between these is so small because all
load instructions went to a different address making it possible to send them without
waiting for the previous result. Our first results for the UART seemed odd with the
configuration that has to copy ten bytes instead of eight being five cycles faster.

After disassembling the code generated for the tests it became clear why this occurs.
The compiler was reusing registers and storing some of the bytes it copied already
to the stack. In the case of copying eight bytes more of these stores are planned before
loading the last byte into a register. Our timing only cares for when the last byte arrives

24

in a register, so the implementation that copies more bytes ends up with a lower cycle
count.

The initial measurement ended up being inaccurate, so we looked at the
disassembly of all of the test binaries and noticed that all of them store at least some
of the results to the stack after reading them. Armed with the disassembly and
detailed logs we calculated corrected cycle counts to indicate when the final store is
finished and added them to the table. The corrected results match up with our initial
expectations and show that our interface definitely has lower latency.

One other question we wanted to answer was if the added layer of SDL added extra
latency compared to the Linux joystick AP To test this we attached the same joystick
to the UART through the joystick API and through our interface using SDL. We then set
both to check for events every cycle to make sure we would not introduce extra delays.
In our testing both received the events the same cycle most of the time, but sometimes
our interface actually received events a cycle earlier through SDL. After checking the
SDL source code it becomes obvious that polling the SDL event queue makes it check
the joystick file descriptor directly. The cycle difference is probably due to SDL using
evdev instead of the joystick API on Linux.

The last measurement is subjective, but in all our testing we never noticed
significant input latency. As long as applications process input regularly it should not
be a problem.

5.2 Example program

While the code snippets and descriptions throughout this thesis give an idea of how
to use the interface, we would like to show a complete example that actually uses the
data. There are several pieces of example code available in the repository [13], but we
decided to explain our joystick state visualisation. The commented code is available
in appendix C and in the repository as joyinputviz.c. An example of how this looks
when running is shown in figure 5.1.

The example is showing the state of an Xbox 360 controller. The bar on top indicates
the state of individual buttons, the bars below it show the values of all the axes, and the
block on the bottom moves to visualise the direction the d-pad is pointing.

We will now give a more detailed explanation of how this is achieved by dividing
the code into four sections.

We start by including MGInputEvents.h which describes the event structures from
appendix A. We also define some other data structures that we use later on.

The first section with executable code sets up the pointers into JoyInput memory
and activates the device. The device is configured to produce events and to notify us of
new events on channel 0 which we activate. We read information about the layout of
the connected joystick and exit cleanly if it exceeds the limits of what we can visualise.
The initial states for buttons, axes, and hats are read into the local data structure from
the interface.

The next section sets up the graphics. We do not use the gfx library to control the
graphics so to understand this code we recommend looking at the documentation,
doc/mgsimdev-gfx.rst, in the MGSim repository [12].

Drawing starts with the background, which is a single stretched black pixel. A 1-bit
palette is created for drawing the bar that shows the button state.

25

https://github.com/Fleppensteyn/joyinput-examples/blob/master/joyinputviz.c
https://github.com/Fleppensteyn/mgsim/blob/master/arch/dev/MGInputEvents.h
https://github.com/Fleppensteyn/mgsim/blob/master/doc/mgsimdev-gfx.rst

@ S F Mcsim display: 640x400, 10000 kernel cycles / frame

Figure 5.1: joyinputviz connected to an Xbox 360 controller

The button bar is rendered by a line with as many pixels as there are buttons, which
we stretch to screen width. This way we can render the correct state by directly copying
the state we keep into graphics memory.

The bars for axis states are rendered next, which is done using stretched white pixels
scaled based on the value in the state. Hats are also single white pixels, but turned into
a cube and positioned to reflect the direction in their state.

With all the graphics prepared we move to the final section. The main loop that
processes any events that our interface presents. The loop starts by waiting for a
notification so we can avoid constantly checking the interface for new events. When
there are events in the queue on the interface we enter a loop that runs until the queue
is empty. It starts by copying the event data to the local event and popping the event
queue. It first checks if the event matches the stopping condition, which is releasing
button 0, before moving on to processing it further. Processing is a simple switch
statement that updates the local joystick state and makes the required changes to the
graphics framebuffer to reflect this change in state.

Axis values are mapped from the signed 16-bit value to unsigned 8-bit for display,
hat state is decoded using masking and the square is positioned accordingly, and the
button state is updated using masking and bitwise operations and copied to graphics
memory.

This example demonstrates almost all of the functionality our interface provides for
joysticks so it was suitable for a more detailed explanation, but we have listed other
examples in the repository in table 5.2 with a small description.

File Description

joyinput.c Prints text about events of up to four connected Joylnput devices.
joyinputvizmouse.c Visualises mouse position and movement.

joyinputviznoint.c The same visualisation explained in section 5.2 without interrupts.

multijoytest.c Draws movable dots for up to 4 connected devices.

pong.c Simple 2 player pong implementation that uses the graphics library.
uartjsvizold.c Joystick visualisation using the UART and Linux joystick API.
uartjsviznew.c Joystick visualisation using the UART and SDLInputManager.

Table 5.2: Description of examples in the repository

26

https://github.com/Fleppensteyn/joyinput-examples/blob/master/joyinput.c
https://github.com/Fleppensteyn/joyinput-examples/blob/master/joyinputvizmouse.c
https://github.com/Fleppensteyn/joyinput-examples/blob/master/joyinputviznoint.c
https://github.com/Fleppensteyn/joyinput-examples/blob/master/multijoytest.c
https://github.com/Fleppensteyn/joyinput-examples/blob/master/pong.c
https://github.com/Fleppensteyn/joyinput-examples/blob/master/uartjsvizold.c
https://github.com/Fleppensteyn/joyinput-examples/blob/master/uartjsviznew.c

Chapter 6

Conclusion

We set out to design and implement an interface for accessing external input devices
inside the simulation and in that regard we succeeded. There are still unresolved issues
and problems with our approach, but it provides a lot of the required functionality.

6.1 What works

The component can be configured to connect to joysticks, mice and touch devices
through SDL and provides multiple ways to access the data produced by these
devices. In the end the design is mostly inspired by joysticks with all the different
kinds of data being based on features found on these devices, but mouse data can be
mapped to this quite easily. For joysticks and mice we currently provide access to
both events and device state while touch input is limited to events. Accessing the
event and device state is fairly robust and will work consistently during normal
operation. Although we did not test it with touch devices, the limited functionality we
provide for them should function as well. Recording and replaying sessions also
functions and while it does not stall the system, it does verify received requests,
reproduces accurate responses, and terminates in case the simulation deviates from
the recording.

6.2 Future work

Although the design and its implementation are functional there is always room for
improvement.

The handling of touch input is very limited and could be improved quite a bit. We
had no environment to test it in and as such could only provide a theoretically
functional event passing solution. The main improvements would include storing
per-finger data in the state access regions of the address space as well as supporting
the gesture capabilities built into SDL, although that would not necessarily be the
most realistic capability to implement.

There are features like force feedback on controllers that can be controlled through
SDL, which would be nice expose through our interface to enable the simulated system
to provide feedback to the outside world.

One rather unfortunate limitation of our current implementation is that in order for
SDL to start processing events there needs to be an active window. It will not work
properly and consistently when there is no window. This requires more research into
the internal workings of SDL which we did not have time for.

27

To make the interface easier to use inside the simulation one of the future
developments could be a driver to simplify usage of an input device. We could even
have it run on a separate core with I/O access. That way the main program does not
have to concern itself with checking for and copying the events.

The deterministic replay functionality could be modified to also stall the processor
in the future. There is a potential other way of implementing replay that does so at the
event supplier level. This involves logging the events that the component receives
when recording and sending those same events to the component during replay
without needing to connect a device.

While we did list its disadvantages, we would still like to improve direct state access
in the design by allowing variable access width. This would be limited to only allow
bigger widths than the original and would require them to be aligned. That way we
can deal with endianness effectively and we can handle requests that go out of defined
space by zeroing undefined parts.

Some miscellaneous possible improvements are handling device dis- and
reconnection properly and allowing relative mouse mode [5].

6.3 What | learned

This project has taught me a lot about computer architecture and how the CPU can
interact with separate memory mapped I/O devices. I learned about designing
protocols that could work with this model. In my research I learned about
frameworks for input gathering as well as how part of the USB stack on Linux
functions to facilitate the interfaces used to present them. In extending the MGSim
simulator I learned more about emulating systems and how it was approached in this
case. Writing examples and testing taught me to write simple C programs while
having no access to a standard library and no backing operating system.

28

Bibliography

[1] Mike Lankamp, Raphael '’kena’ Poss, Qiang Yang, Jian Fu, M. Irfan Uddin, and Chris R.
Jesshope. Mgsim - simulation tools for multi-core processor architectures. CoRR,
abs/1302.1390, 2013.

[2] Simple DirectMedia Layer homepage. https://www.libsdl.org/.
[3] SDL Event Handling documentation. https://wiki.libsdl.org/CategoryEvents.

[4] SDL gesture recognition documentation. https://hg.libsdl.org/SDL/file/default/docs/
README-gesture.md.

[5] SDL mouse APl documentation. https://wiki.libsdl.org/CategoryMouse.

[6] Microsoft Corporation. Directinput APl documentation. https://msdn.microsoft.com/
en-us/library/windows/desktop/ee416842(v=vs.85).aspx.

[7] Microsoft Corporation. XInput APl documentation. https://msdn.microsoft.com/en-
us/library/windows/desktop/ee417003(v=vs.85).aspx.

[8] Linux input documentation - input/input.txt. https://github.com/torvalds/linux/
blob/master/Documentation/input/input.txt.

[9] Linux joystick APl documentation - input/joystick-api.txt. https://github.com/
torvalds/linux/blob/master/Documentation/input/joystick-api.txt.

[10] Mark Patrick, George Sachs. X11 Input Extension Library Specification. http:
//refspecs.linux-foundation.org/X11/Xinput.pdf.

[11] Kivy homepage. https://kivy.org/.

[12] MGSim branch with our modifications on Github. https.//github.com/Fleppensteyn/
mgsim.

[13] GitHub repository with examples. https://github.com/Fleppensteyn/joyinput-
examples.

29

https://www.libsdl.org/
https://wiki.libsdl.org/CategoryEvents
https://hg.libsdl.org/SDL/file/default/docs/README-gesture.md
https://hg.libsdl.org/SDL/file/default/docs/README-gesture.md
https://wiki.libsdl.org/CategoryMouse
https://msdn.microsoft.com/en-us/library/windows/desktop/ee416842(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ee416842(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ee417003(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ee417003(v=vs.85).aspx
https://github.com/torvalds/linux/blob/master/Documentation/input/input.txt
https://github.com/torvalds/linux/blob/master/Documentation/input/input.txt
https://github.com/torvalds/linux/blob/master/Documentation/input/joystick-api.txt
https://github.com/torvalds/linux/blob/master/Documentation/input/joystick-api.txt
http://refspecs.linux-foundation.org/X11/Xinput.pdf
http://refspecs.linux-foundation.org/X11/Xinput.pdf
https://kivy.org/
https://github.com/Fleppensteyn/mgsim
https://github.com/Fleppensteyn/mgsim
https://github.com/Fleppensteyn/joyinput-examples
https://github.com/Fleppensteyn/joyinput-examples

Appendix A

Event structure overview

A.1 Common event structure

These event structures, enumerations, constants, and masks are contained in the header
MGInputEvents.h available on GitHub [12].

struct MGCommonInputEvent

{
uint32_t timestamp;
uint8_t type;

}s

All events share these fields. The timestamp is copied from the SDL event and based on
SDLs cycle count. The type is the main indicator for the event structure and can be used
to determine what parts of the event need to be copied. Type can take the the values
outlined in the enumeration below.

enum eventtypes

{
MG_JOYAXISMOTION = 0x01,
MG_JOYBUTTON,
MG_JOYHATMOTION,
MG_JOYBALLMOTION,
MG_DEVICEATTACHED,
MG_DEVICEREMOVED,
MG_MOUSEMOTION = 0x11,
MG_MOUSEBUTTON,
MG_MOUSEWHEEL,
MG_TOUCHDOWN = 0x21,
MG_TOUCHMOTION,
MG_TOUCHUP

}s

The actual event type can be determined by looking at the value in the most
significant 4 bits of the type. As their names suggest, 9x6X means MGJoyInputEvent,
0x1X means MGMouseInputEvent, and 0x2X means MGTouchInputEvent. These events
will be explained in more detail on the following pages.

30

https://github.com/Fleppensteyn/mgsim/blob/master/arch/dev/MGInputEvents.h

A.2 Joystick events

typedef struct MGJoyInputEvent

{
uint32_t timestamp;
uint8_t type;
uint8_t num;
intl6_t value;
intl6_t value2;
intl6_t padding;

} MGJoyInputEvent;

#define MG_HAT_UP 0x01
#define MG_HAT_RIGHT 0x02
#define MG_HAT_DOWN 0x04
#tdefine MG_HAT_LEFT Ox08

Joystick events usually only require reading the second 4-byte block to get all the
relevant data, the only event type that uses value2 is ball motion. These fields and
their function should be clear, with only three extra fields next to the common ones.

The num field relates to the index of the part that triggered the event, this index starts
at zero and is a direct copy of the SDL assigned index.

The value field contains the absolute axis value, a binary button state, a 4-bit hat
state, or the relative x movement for a ball, with the value2 field containing the relative
y movement for a ball. The direction represented in the hat state can be deciphered
using binary and operations and the masks we provided.

If, for example, the fifth button of a device is pressed the resulting event would have:
type = 1, num = 4, value =1

31

A.3 Mouse events

typedef struct MGMouseInputEvent

{
uint32_t timestamp;
uint8_t type;
uint8_t num;
uint8_t state;
uint8_t clicks;
intl6_t xpos;
intl6_t ypos;
intl6_t xrel;
intl6_t yrel;

} MGMouseInputEvent;

#define MG_BUTTON_LEFT 0]
#define MG_BUTTON_MIDDLE 1
#define MG_BUTTON_RIGHT 2
#define MG_BUTTON_X1 3
#define MG_BUTTON_X2 4

(

#define MG_BUTTONMASK (X) 1 << (X))

Mouse events contain a lot more information and are more expensive to transmit, but
if we were to convert every mouse event to multiple joystick events that effectively
convey the same information we would have to transmit much more data.

These events are very straight translations of the SDL events they are based on.

The num field indicates what button is being pressed in the case of a button event.
To determine which button is which we provide some helpful constants. We started
numbering from zero instead of one unlike SDL.

In the state field we store the button state. In the case of button event this is simply 0
or 1. In the case of mouse motion events it contains an unsigned integer which encodes
the state of all mouse buttons. This is similar to the way we normally represent button
states so there is a bit for every button. To make masking easier there is a macro included
to generate one for a given button.

The clicks field is only relevant in mouse button events where it indicates how many
times the user has clicked consecutively, like double and triple clicks and beyond. This
information is only available through events and is not mapped to any part of the state.

The xpos and ypos fields contain the absolute position of the pointer. This is the click
position for button events and the stopping position for motion events. This value is
relative to the window.

The xrel and yrel fields contain relative movement. In the case of mouse motion this
is the difference between start and end positions and for scroll events these indicate the
scroll direction.

If, for example, the mouse was moved from 100, 100 to 120, 80 while holding both
left and right mouse buttons it would result in the following event data:
type = 0x11, state = 5, xpos = 120, ypos = 80, xrel = 20, yrel = -20

32

A.4 Touch events

typedef struct MGTouchInputEvent

{
uint32_t timestamp;
uint8_t type;
uint8_t num;
uint8_t device;
uint8_t pad;
intl6_t xpos;
intl6_t ypos;
intl6_t xrel;
intl6_t yrel;
intl6_t pressure;
intl6_t pad2;

} MGTouchInputEvent;

Touch events are unique in the sense that all fields are filled for all the types of touch
event. Their fields are basically copied from the SDL touch events, with the main
difference being that all the floats have been converted to signed fixed point with all
bits apart from the sign dedicated to the fractional part.

When using multitouch every finger is assigned an index as long as it is on the screen,
this is contained in the num field.

The device field refers to which touch input device it originated from. Due to our
lack of touch screens to test, it has been left in as we were not certain about its precise
use and it was not taking up any additional space.

The xpos, ypos, xrel, and yrel fields are all fixed point numbers representing the
same data as the mouse fields of the same name. The main difference is that the position
is mapped on a number between 0.0 and 1.0, and the relative movement is mapped
between —1.0 and 1.0.

The last field for pressure is fixed point mapped between 0.0 and 1.0, but many
platforms do not actually provide this information to SDL.

The code we use for float to fixed conversion is shown in the listing below.

static short convertToFixed(float f)

{
if (f > 0.9999999) f = 0.9999999;
else if (f < -0.9999999) f = -0.9999999;
return (short) (f x 32768.0);

}

33

Appendix B

Code for performance measurement

This is an excerpt of code for our tests in 5.1. The code we show is just the part we
timed for our results. We unrolled copying to improve efficiency over loops. This code
is slightly slower compared to manually optimised assembly, but this is an illustration
of what normal users can expect when using a compiler.

We start by describing common variables before moving to copying code.

MGJoyInputEvent mgev; //Data storage for copied events
struct js_event jsev; //Linux joystick API event for storage

The code for UART copying with comments showing variations between the two tests.

uint8_t xbb = (voidx)&jsev; //Buffer for testing Linux API events
uint8_t *bb = (voidx)&mgev; //Buffer for testing MGJoyInputEvents
volatile uint8_t *uart; //UART base address
if (uart[5] & 1){ //Timing starts when we receive uart[5]
bb[0] = uart[0]; //Copy a byte from the UART
bb[1] = uart[0]; //Copy the next byte
bb[7] = uart[0]; //Last byte for Linux API events
bb[9] = uart[0]; //Last byte for MGJoyInputEvents
}

The code for JoyInput copying with a comment indicating the chunk for partial events.

uint32_t *gb = (voidx)&mgev; //buffer pointer for JoyInput
volatile uint8_t *joydev; //JoyInput base address
volatile uint32_t *xjoyev; //JoyInput event section (at 0x200)

if (joydev[4]){ //Timing starts when we receive joydev[4]
gb[0] = joydevev[0];
gb[1] = joydevev[1l]; //The only chunk we copy for partial events
gb[2] = joydevev[2];
joydev[4] = 1; //Pop the event queue

}

34

O OO Ul W~

Appendix C

Example program source code

Also available as joyinputviz.c on our example repository on GitHub [13].

#include <svp/testoutput.h>
#include <svp/mgsim.h>
#include <stdint.h>
#include <stddef.h>

#include "mtconf.h"
#include "MGInputEvents.h"

typedef struct joystickdata //Local joystick info and state
{
uint8_t naxes;
uint8_t nbuttons;
uint8_t nhats;
uint8_t nballs;
uint32_t buttons;//Bitset for button state
intl6_t axes[8];//Should cover all reasonable joysticks
uint8_t hats[8];//Never seen more than one on a device
intl6_t balls[16];//Enough for 8 balls
} joystickdata;

typedef struct joydevctl //simplifies access to control registers
{

uint8_t enabled;

uint8_t events;

uint8_t notifications;

uint8_t channel;

uint8_t queuesize;
} joydevctl;

typedef struct joydevinfo //simplifies access to device info
{

uint32_t axes;

uint32_t buttons;

uint32_t hats;

uint32_t balls;
} joydevinfo;

typedef struct drawcmd //Helps with draw commands on the GPU
{

uint32_t cmd;

uint32_t mode;

uint32_t offset;

uint32_t scanlen;

uint32_t size;

uint32_t pos;

uint32_t dsize;
} drawcmd;

int main(void){
sys_detect_devs();
sys_conf_init();

//Set up helpful pointers
volatile joydevctl xjoydev = (voidx)mg_devinfo.base_addrs[mg_joyinput_devids[0]];

volatile uint8_t *joydevbase = (voidx)mg_devinfo.base_addrs[mg_joyinput_devids[0]];

volatile joydevinfo *joyinfo = (voidx)&joydevbase[0x100];
volatile uint32_t *evdata = (voidx)&joydevbase[0x200];

35

https://github.com/Fleppensteyn/joyinput-examples/blob/master/joyinputviz.c

58 volatile long *notif = (voidx)mg_devinfo.channels;
59 joydev->enabled = 1;

60 joydev->events = 1;

61 notif[0] = 1; //enable channel

62 joydev->channel = 0;

63 joydev->notifications = 1;
64 int i, cmdi = 0; //two counters
65

66 joystickdata js; //Joystick info and state

67 MGJoyInputEvent ev;//To store an event

68 //Gather information about the joystick

69 js.naxes = joyinfo->axes >> 24; //shifting to get the axes count
70 js.nbuttons = joyinfo->buttons >> 24;

71 js.nhats = joyinfo->hats >> 24;

72 js.nballs = joyinfo->balls >> 24;

73

74 //Make sure we can actually draw this joysticks state

75 //These limits should not be a problem for most existing joysticks

76 if (js.naxes > 8 || js.nbuttons > 32 || js.nhats > 8){

77 output_string("Joystick layout breaks visualisation limits\n",1);

78 return 0; //Exit the program instead of littering the code with if statements
79 }

80

81 //gather data on initial state of axes

82 volatile intl6_t *axesdata = (voidx)&joydevbase[0x400];
83 for (i = 0; i < js.naxes; i++)

84 js.axes[i] = axesdatal[i];

86 //gather data on initial state of buttons (always 0 on Linux)
87 volatile uint8_t *buttondata = (voidx)&joydevbase[0x800];

88 for (i = 0; i <= (js.nbuttons - 1) >> 3; i++)
89 js.buttons += buttondatal[i] << (i * 8);
920

91 //gather data on initial state of hats (always 0 on Linux)
92 volatile uint8_t *hatsdata = (voidx)&joydevbase[0xc00];

93 for (i = 0; i < js.nhats; i++)
94 js.hats[i] = hatsdatal[i];

95

96 //initialise the graphics device
97 mg_gfx_ctl[1] = 640;

98 mg_gfx_ctl[2] = 400;

99 mg_gfx_ctl[0] = 1;

100 mg_gfx_ctl[3] = 5;//Start the command buffer after the palette and button texture
101 volatile uint32_t *gfxcmd = (uint32_tx)mg_gfx_fb + 5; //command buffer
102

103 //We put all the colours we use at the start

104 volatile uint32_t *palette = (uint32_tx)mg_gfx_fb;

105 palette[0] = 0x00000000U;//black

106 palette[1l] = oxe0ffffffu;//white

107 palette[2] = 0x00550000U;//red

108 palette[3] = 0x0000aad0bU;//green

109

110 //First command clears the screen to black

111 gfxcmd[cmdi++] = 0x206;

112 gfxemd[cmdi++] = 0x20;//32 bit colour

113 gfxcmd[cmdi++] = 0; //texture starts at O

114 gfxcmd[cmdi++] = 1

115 gfxemd[cmdi++] = 1 << 16 | 1; //texture size is 1x1

116 gfxcmd[cmdi++] = 0; //position is 0,0

117 gfxcmd[cmdi++] = 640 << 16 | 400;//Stretch 1 pixel to screen size
118

119 gfxemd[cmdi++] = 0x102;//set a palette of red/green

120 gfxcmd[cmdi++] = 2;//0of size 2

121 gfxcmd[cmdi++] = 2;//starting at offset 2

122

123 //Location to store button data as a texture

124 volatile uint32_t *gfx_buttondata = (uint32_t*x)mg_gfx_fb + 4;

125 *gfx_buttondata = js.buttons; //store the initial button state
126

127 volatile drawcmd xbuttoncmd = (drawcmdx*)&gfxcmd[cmdi];

128 buttoncmd->cmd = 0x206;

129 buttoncmd->mode = 0x10001;//use 1 bit red/green palette

36

130 buttoncmd->offset = 4; //Location of button state

131 buttoncmd->scanlen = 32; //32 bits per line

132 buttoncmd->size = js.nbuttons << 16 | 1; //only show existing buttons
133 buttoncmd->pos = 0; //start at the origin

134 buttoncmd->dsize = 640 << 16 | 20;//Stretch the bar to screen width
135

136

137 //Set up locations of commands for axes/hats

138 volatile drawcmd xaxescmd = (drawcmd*)&gfxcmd[cmdi+7];

139 volatile drawcmd xhatscmd = &axescmd[js.naxes];

140

141 //Axes stretch a single pixel into a white bar

142 for (i = 0; i < js.naxes; i++){

143 axescmd[i].cmd = 0x206;

144 axescmd[i].mode = 0x20;//32-bit colour

145 axescmd[i].offset = 1;//Location of white value

146 axescmd[i].scanlen = 1;

147 axescmd[i].size = 1 << 16 | 1;

148 axescmd[i].pos = ((i * 80) + 20) << 16 | 40;

149 axescmd[i].dsize = 40 << 16 | (js.axes[i] + 32768) >> 8;

150 }

151

152 //Hats show their state with a white block

153 //We initialise them centred for now

154 for (i = 0; i < js.nhats; i++){

155 hatscmd[i].cmd = 0x206;

156 hatscmd[i].mode = 0x20;

157 hatscmd[i].offset = 1;

158 hatscmd[i].scanlen = 1;

159 hatscmd[i].size = 1 << 16 | 1;

160 hatscmd[i].pos = ((i * 80) + 30) << 16 | 330;

161 hatscmd[i].dsize = 20 << 16 | 20;

162 }

163 mg_gfx_ctl[0] = 1;

164

165 int loop = 1;

166 uint32_t xevbuff = (void *)&ev; //To use as a buffer for event data
167 while (loop){

168 notif[0]; //wait for events

169 while (joydev->queuesize){

170 evbuff[0] = evdata[0];

171 evbuff[1l] = evdata[l];//Technically this is the only part we need
172 evbuff[2] = evdata[2];

173 joydev->queuesize = 1;//pop the queue

174 if (ev.type == MG_JOYBUTTON && ev.num == 0 && ev.value == 0){
175 loop = 0;

176 break;//exit the loop if we release button 0

177 }

178 switch (ev.type){

179 case MG_JOYAXISMOTION://Axis value is mapped to [0,255] for display
180 js.axes[ev.num] = ev.value;

181 axescmd[ev.num].dsize = 40 << 16 | (ev.value + 32768) >> 8;
182 break;

183 case MG_JOYHATMOTION:

184 js.hats[ev.num] = ev.value;

185 if (ev.value == 0){//hat in origin

186 hatscmd[ev.num].pos = (ev.num * 80) + 30 << 16 | 330;
187 } else {//Hat state is decoded to position the square

188 int x = 1, y = 1;

189 if (ev.value & MG_HAT_UP)

190 y = 0;

191 else if (ev.value & MG_HAT_DOWN)

192 y = 2;

193 if (ev.value & MG_HAT_LEFT)

194 X = 0

195 else if (ev.value & MG_HAT_RIGHT)

196 X = 2

197 hatscmd[ev.num].pos = (ev.num x 80) + 10 + (x * 20) << 16 | 310 + (y * 20);
198 }

199 break;

200 case MG_JOYBUTTON://Button state 1is updated using masking
201 if (ev.value == 0)

37

202 js.buttons &= ~(1L << ev.num);

203 else

204 js.buttons |= (1L << ev.num);

205 *gfx_buttondata = js.buttons; //Copy new data to framebuffer
206 break;

207 case MG_JOYBALLMOTION://No ball visualisation
208 default:

209 break;

210 }

211 }

212 }

213 joydev->notifications = 0;

214 joydev->enabled = 0;
215 return 0;
216 }

38

	Introduction
	MGSim
	Thesis overview

	Analysis of requirements and prior work
	Design requirements
	Examining existing frameworks
	Simple DirectMedia Layer (SDL)
	DirectInput and XInput
	Linux input devices
	X Input Device Extension Library
	Kivy

	Summary

	Interface design
	Design overview
	Address space division and protocol
	Interface control and status
	Device information
	Event access
	Direct state access

	Design decisions
	Access width
	Event queue popping
	Extensibility

	Implementation in MGSim
	Implementation process overview
	Proof of concept using the UART
	Supporting SDL-based input devices in MGSim
	Interacting with the SDLInputManager
	Implementation details

	Updating the proof of concept
	The JoyInput component
	Configuration
	Communications with SDLInputManager
	Request handling
	Replay functionality

	Results
	Performance measurements
	Example program

	Conclusion
	What works
	Future work
	What I learned

	Bibliography
	Event structure overview
	Common event structure
	Joystick events
	Mouse events
	Touch events

	Code for performance measurement
	Example program source code

